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Abstract

This paper provides empirical evidence on the extent of
producer heterogeneity in the output market by analyzing output
price and price-marginal cost markups at the plant level for
thirteen homogeneous manufactured goods.  It relies on micro data
from the U.S. Census of Manufactures over the 1963-1987 period. 
The amount of price heterogeneity varies substantially across
products.  Over time, plant transition patterns indicate more
persistence in the pricing of individual plants than would be
generated by purely random movements. High-price and low-price
plants remain in the same part of the price distribution with
high frequency, suggesting that underlying time-invariant
structural factors contribute to the price dispersion.  For all
but two products, large producers have lower output prices. 
Marginal cost and the markups are estimated for each plant.  The
markup remains unchanged or increases with plant size for all but
four of the products and declining marginal costs play an
important role in generating this pattern.  The lower production
costs for large producers are, at least partially, passed on to
purchasers as lower output prices. Plants with the highest and
lowest markups tend to remain so over time, although overall the
persistence in markups is less than for output price, suggesting
a larger role for idiosyncratic shocks in generating markup
variation. 
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     1 Studies that rely on plant or firm-level panel data sets include:  Mueller
(1986) on profit differences, Dunne, Roberts, and Samuelson (1989) on growth
and failure rates, Davis, Haltiwanger, and Schuh (1996) on growth rates,
Lichtenberg and Siegel (1991) and Klette (1996) on R&D investment, Dunne
(1994) on technology adoption, Bailey, Hulten, and Campbell (1992), Griliches
and Regev (1995), Olley and Pakes (1996), and Tybout (1996) on productivity
differences, and Davis and Haltiwanger (1991) on wages.
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I. Introduction

Two common features of producer micro data are that,

regardless of the dimension examined, producers often differ as

much within the same industry as they do across industries and

these differences can survive over long periods of time.  Besides

well-recognized variation in size and capital intensity, recent

empirical studies have documented extensive heterogeneity in

producer profit rates, failure probabilities, growth rates, the

adoption of advanced technologies, R&D expenditures, productivity

levels and growth rates, and labor compensation.1  Coincident

with this accumulation of empirical evidence has been the

development of theoretical models of firm and industry dynamics

capable of explaining some of the empirical patterns.  The key

components that provide these models with their power to explain

the data include: a source of firm-level heterogeneity, often

modeled as differences in production efficiency, idiosyncratic

shocks that lead to different firm-level learning, investment or



     2 Dynamic models of entry and exit with differential efficiency among
producers include Jovanovic (1982), Lambson (1991), Hopenhayn (1992), and
Ericson and Pakes (1995).
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productivity paths, and sunk entry costs that slow or prevent the

sorting out of inefficient from efficient producers.2

While the combination of firm-level heterogeneity in costs,

idiosyncratic shocks to firm productivities, and a process of

market selection appear to be very important in explaining the

dynamic patterns of firm growth and failure, what is missing from

the literature is systematic evidence on how these forces affect

the output market; specifically, the output prices and markups

charged by producers and their evolution over time. This gap in

the empirical record can be traced to the difficulty of measuring

output prices for individual producers, particularly for

representative cross-sections or at more than one point in time. 

This evidence is also directly relevant to the long-standing question

in industrial organization of whether the superior profit performance

of some firms reflects more efficient production, the ability to

charge higher markups, or a combination of the two (see Demsetz

(1973), Peltzman (1977), Mueller (1986), and Schmalensee (1989)).  

Direct assessment of this issue requires micro data on prices, costs,

and markups.

The goal of this paper is to provide empirical evidence on

the extent of producer heterogeneity in the output market,

specifically, the heterogeneity in output prices and markups.  We

document both the cross-sectional and time-series patterns in
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prices and markups at the plant level for thirteen products

relying on data drawn from the U.S. Census of Manufactures over

the 1963-1987 period.  We focus on homogeneous manufactured

products in order to remove, as much as possible, price

differences due to heterogeneity in the output itself.  The data

source is unusual in several dimensions. It provides wide

coverage of the cross-section of plants in an industry and is not

limited to just the large or long-lived producers.  It allow us

to construct important cost variables, particularly the price of

material inputs, at the plant level so that plant-level markups

control for cost heterogeneity among producers.  Finally, we can

trace individual manufacturing plants over time and  document the

persistence of price, cost, and markup patterns. 

A number of earlier studies including Stigler (1961),

Stigler and Kindahl (1970), and Pratt, Wise, and Zeckhauser

(1979) have documented that the price of a good can vary

substantially across different buyers or sellers.  Output prices

can vary across manufacturing plants in an industry for many

reasons including, unobserved product heterogeneity or quality

variation across producers, high search costs by consumers, or

differences in production costs or competition across local

geographic markets.  It can also arise in micro data as a result



     3 Several recent empirical studies use micro data sets to examine one or
more sources of price dispersion.  Borenstein and Rose (1994) examine ticket
prices on specific airline routes and use differences in demand conditions
among the routes to explain differences in the degree of price dispersion. 
Bresnahan and Reiss (1991) and Dunne and Roberts (1992) use variation in the
number of competitors across small geographic markets to explain price
differences among tire retailers and bread manufacturers, respectively.
Wiggins and Maness (1993) use time-series variation in the number of
manufacturers to explain price differences for pharmaceutical products.
Shepard (1991) exploits differences in the ability of single and multi-product
firms to price discriminate to explain differences in the average price of
full and self-serve gasoline among retail service stations in a single
geographic market.  Abbott (1989) develops a test to distinguish real price
dispersion from pure measurement error in the micro data and applies it to
output prices for the U.S. cement industry.  Van Hoomissen (1988) and  Lach
and Tsiddon (1992) study the effect of inflation on price dispersion.  Pratt,
Wise, and Zeckhauser (1979) and Dahlby and West (1986) use models of costly
consumer search to explain price dispersion.
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of reporting or measurement errors.3   Just as the extent of

price dispersion is likely to vary across products, no single

explanation will be relevant for all the products we study.

Instead, the explanation will depend on the particular details of

the technology, demand, market competition, and random shocks

that pertain to each product.  To organize the evidence for the

broad range of products we study, we focus on distinguishing

price and markup differences at the plant level that persist over

time from transitory differences that do not. To the extent that

observed price and markup differences persist, it is likely they

arise from differences across producers in technology, product

quality, demand conditions, market competition, or other

structural factors that are constant or change slowly over time. 

In contrast, if uncorrelated random shocks or measurement errors

are the main sources of producer heterogeneity then price and

markup differences are much more likely to be transitory. 
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The remainder of this paper is organized as follows.  The

second section discusses some unique characteristics of the

Census of Manufactures establishment data that are relevant for

output price and markup measurement.  The third section

summarizes the patterns of output price variation across

producers, their persistence over time, and the correlation

between plant size and prices.  The fourth section summarizes the

estimation of plant-level marginal cost and the fifth section

presents the cross-sectional and time-series patterns in plant

markups. 

II. Output Price Measurement with Census Establishment Data

In order to make meaningful comparisons of output prices

across producers it is important to begin with physically

identical goods that are produced by a number of plants.  The

data are drawn from the U.S. Census of Manufactures, which is a

survey of all manufacturing establishments conducted in the years

1963, 1967, 1972, 1977, 1982, and 1987.  As part of the census,

each surveyed establishment reports the value of shipments of

each seven-digit SIC product manufactured in the plant as well as

the physical quantity produced for a subset of homogeneous

products with well-defined units of measure.  This allows us to

construct a plant-specific average price, as the ratio of the



     4  This annual average price is a quantity-weighted average of the price of
each unit of output sold over the year.  Even if all plants sell at exactly
the same price at any point in time, we can observe cross-sectional variation
in our plant output prices if the common market price fluctuates over the year
and plants do not sell identical shares of output at each of the different
prices.  This type of aggregation bias, however, should not create correlation
in a plant’s price across census years. 
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annual value of shipments to the annual quantity of output

shipped, for very disaggregated products in each census year.4 

In order to compare markups across producers it is necessary

to control for cost variation.  Since raw materials can often

account for more than 50 percent of production costs in a

manufacturing plant it is important to control for variation in

material prices across establishments.  The Census of

Manufactures also collects data on the plant's expenditure on

material inputs and the physical quantity of inputs purchased for

detailed raw material categories.  This allows us to construct a

plant-specific average price of materials for important inputs. 

The products we have chosen to study all have one or two well-

defined material inputs that account for a significant fraction

of total material expenditures in the plant and for which

expenditure and quantity data are collected.   

This study will examine output price dispersion across

manufacturing plants for 13 products:  white pan bread, roasted

coffee, cotton sheeting and allied fabrics, 100% spun polyester

blends with cotton, finished wool apparel fabrics, hardwood oak

flooring, hardwood plywood, softwood plywood, newsprint,



     5  The number of products for which quantity data is collected and the
number of producers covered have both fallen over time and, since we want to
study changes in a producers’ price over time, this also affected the set of
products we study.

     6  Coffee and wool fabrics are each an aggregate of two seven-digit products. 
 Corrugated boxes is an aggregate over 9 to 11 seven-digit categories that are
defined by the end use of the product.  

     7  Data is available from each of the six censuses between 1963 and 1987 for
all products except:  cotton sheeting, where 1987 is not available, polyester
blends, where 1963 and 1987 are not available, softwood plywood, hardwood oak
flooring, and newsprint, where 1982 and 1987 are not available, and tin cans,
where data is not available after 1972.  The missing years result from
redefinition of the seven-digit product codes which made it impossible to
construct a consistent definition over all census years.  In general, products
are aggregated in the later census years.  In each case we have constructed
consistent product definitions based on the original survey forms from each
year and this allows us to avoid problems introduced by large-scale changes in
the SIC codes in 1972. 
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corrugated boxes, motor gasoline, ready-mixed concrete, and tin-

plate steel cans.5  Each of these is a seven-digit SIC product

with the exception of coffee, wool fabrics, and corrugated boxes

which are aggregates over several seven-digit categories.6  Each

of the thirteen products is fairly homogeneous and has been

chosen to eliminate, as much as possible, price differences that

result from output heterogeneity among producers in the seven-

digit product category.7    With this data we can analyze the

cross-sectional distribution of plant-level output prices, shifts

of the price distribution over time, and the movement of

individual producers through the different yearly distributions.

III. Pricing Patterns at the Plant Level

A. Cross- Section Variation in Output Prices



     8 We will maintain this ranking of products from highest to lowest average
dispersion in all remaining tables in this paper.
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In this section we summarize the heterogeneity in output

prices for each product.  Table 1 reports three summary

statistics of the output price distributions in each year.  The

first is the trimmed mean, which deletes the lowest five percent

and highest five percent of observations in each year in order to

remove the effect of outliers in the data.  The second measure is

the coefficient of variation, the ratio of the standard deviation

to the mean multiplied by 100. The final summary statistic is a

measure of dispersion that is likely to be more robust to

measurement errors and outliers in the data.  It is constructed

as the difference between the 90th and 10th percentile of the

distribution divided by the median.  The final column of the

table reports the average value of the two dispersion measures

across all available years and the products are ranked in the

table from highest to lowest dispersion based on the average

value of the robust dispersion measure.8  

The first pattern evident from table 1 is that each of the

products is characterized by cross-sectional dispersion, but the

magnitude of the dispersion varies substantially across products. 

At the extremes, the robust dispersion measure averages 2.34 for

hardwood plywood and .146 for newsprint. The second pattern is

that the amount of dispersion for a given product is similar

across the different years.  For example, the robust dispersion



      9  The coefficient of variation for softwood plywood is unusually large in
one year, 1977, because of a small number of high-price outliers.  The average
coefficient of variation over 1963-1972 is 17.99 which is in line with the
product ranking based on the robust dispersion measure.

     10  Deaton (1989) provides an introduction to kernel density and
regression estimators. 
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measure for hardwood plywood falls between 2.213 and 2.479 for

the different census years, while newsprint varies from .126 to

.161.  As a result, the ranking of products from high to low

dispersion in table 1 would be virtually the same in every year

and any shifts in ranking that did occur would be due to small

movements in the summary statistic.9  

The coefficient of variation and robust dispersion measure

can be easily compared across industries and across time but they

do not provide a complete picture of the price distribution,

particularly the higher moments of the distribution or whether

there exist different modes.  In order to summarize the yearly

price distributions more fully, without placing much structure on

the data, we construct kernel density estimates for each product

in each year.10  In order to remove the effect of general price-

level changes so the separate cross-section price distributions

can be compared, each plant's price in year t is normalized by

the geometric mean price in year t.  Specifically, we estimate

the density of ln P*
it = ln(Pit) - n-1ln( Ji (Pit)) where n is the



      11  This is identical to normalizing by the arithmetic mean of the log
prices in each year.  An alternative normalization is to subtract the log of
the arithmetic mean of the prices.  In this data the  arithmetic and 
geometric means of the prices are virtually identical and the choice of
normalization has no effect on the results.  Our preference for the geometric
mean arises because it is less sensitive to outliers than the arithmetic mean.
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number of plants in year t and the term after the minus sign is

the log of the geometric mean price over all plants in year t.11 

The density of ln P*
it  in year t is estimated as: 

where ln P* is an ordered vector of normalized output prices, Kh

is the kernel function, and the summation is taken over all

plants in year t.  For Kh we use the Epanechnikov (1969) kernel:

The function I(C) is an indicator function that takes the value

one if ln P * and ln P*
it are within an exogenously specified

bandwidth h of each other, and zero otherwise.  This implies that

observations outside of the bandwidth are given a weight of zero

while those within the bandwidth are given a weight that varies

inversely with their distance from ln P*it.

 Figures 1a-1f graph the estimated densities for ln P*it  for

each year for hardwood plywood, cotton sheeting, bread,



     12  Four of the products bread, corrugated boxes, concrete, and gasoline
have at least 150 observations in each year.  The other two products, hardwood
plywood and cotton sheeting, have fewer producers and price observations. 
They each have at least 60 price observations in each year but this may
account for the fact that the density estimates are  more variable over time
for these two products.

     13 Some of this stability may simply reflect the fact that the sample
sizes in every year are larger for these four product than for the products in
panels (a) and (b).
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corrugated boxes, ready-mixed concrete, and gasoline.  These

products were chosen to span the set from high to low dispersion

and because they had sufficient observations to support the

nonparametric estimation.12  The two products with the highest

dispersion, hardwood plywood (panel a) and cotton sheeting (panel

b), also show the most variation in the densities across years. 

Even in these cases several similarities are present.  The

similarity in the overall range of prices across years is clearly

evident.  Also, a second higher-price mode at approximately 1

(approximately twice the mean price) is evident in each year for

hardwood plywood.  This suggests that some largely time-invariant

characteristic such as product quality may be an important

contributor to the high level of price dispersion observed for

this product.

The remaining products in panels (c) through (f) of figure

1, show price densities that are more similar across the

different years.13  In particular, the skewness of the densities

for bread and corrugated boxes is present in every year,

indicating the consistent presence of some high-price producers. 
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Both of these products are sold in small geographic markets and

the skewness could arise if there are some local markets with

consistently higher prices. Concrete and gasoline are more

symmetric distributions and, as seen in table 1, have the lowest

overall levels of dispersion among these six products.

Overall, table 1 and figure 1 indicate clearly that, for all

of the products, there is cross-sectional variation in plant

output prices at every point in time.  There are many possible

explanations for this including: variation in quality that is not

captured by differences in the product definition,  differences

in production costs among plants that are partly or fully passed

on to consumers, high search costs by consumers which can

generate price dispersion even with identical costs across

producers, differences in the competitiveness of output markets

across producers, explicit adjustment costs associated with

changing prices that result in producers responding differently

to cost or demand shocks, or measurement or reporting errors in

the value or quantity of shipments data.  As a first step toward

understanding the source of the cross-sectional dispersion, we

will exploit the multiple time periods in our data and measure to

what extent the price differences reflect permanent time-

invariant differences among plants versus year-specific

idiosyncratic differences.  
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In order to categorize the likely sources of price

variation, assume each plant produces a unique differentiated

product, facing a demand elasticity for its product of 0it and

marginal cost MCit.  The plant chooses price to maximize profit

by equating marginal revenue and marginal cost.  Both the demand

elasticity and marginal cost can vary across plants and time

because of market-level time effects ("t ), plant-specific

factors that do not change over time ((i), and idiosyncratic

shocks that are specific to a plant and time period (,it ).  The

log of the plant’s output price can be written as:

 ln Pit = - ln ( 1 - 1/0it ) + ln MCit =  "t + (i + ,it .

The market level factors reflect such things as changes in costs

due to common input price changes or shifts in market demand for

the product.  The (i  will reflect factors that vary across

plants but are fixed or change very slowly over time.  This can

include differences in product quality among producers,

persistent differences in productive efficiency, or differences

in the competitiveness of the local market in which the plant

operates.  The idiosyncratic shocks will reflect all time-varying

factors that alter a plant’s marginal cost or demand elasticity

as well as measurement or reporting errors in the observed

prices.  In the case where plants are producing an identical



     14  This variable nets out the geometric mean price in each year so common
market-level factors "t  are not included as a source of price variability. 
Two products, wool fabrics and tin cans, are not included because of the small
number of observations or the short time-series available. 
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product and selling it in a single, perfectly competitive output

market then observed prices should be explained only by market

factors that pertain in that year ( "t ) and measurement or

aggregation errors ( ,it ) that result in plant-level price

variation. There should be no role for permanent between-plant

differences in prices arising from (i and all cross-sectional

variation in prices should reflect measurement and reporting

errors.  We will assess the importance of between-plant price

variation versus within-plant price variation over time with both

a variance decomposition and evidence on the persistence of

plant-level pricing patterns over time.

The first two columns of table 2 report the amount of

between- and within-plant variation in 

 ln P*
it.14  Several patterns are evident.  First, moving down the

table from highest to lowest dispersion products, both variances

decline substantially indicating smaller differences in the

average price across plants and less time-series variation in

prices for each plant.  Second, the between-plant variance

declines much more rapidly than the within-plant variance as you

move from high to low dispersion products.  For the three highest

dispersion products, hardwood plywood, polyester, and cotton
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fabric, the between-plant variance is larger than the within-

plant variance, indicating that permanent price-level differences

across plants are the major source of cross-section price

variation.  This is consistent with large, permanent differences

in demand elasticities or marginal costs across plants.  For the

remaining products, time-series variation in each plant’s price

contributes as much (bread, corrugated boxes, and newsprint) or

more (coffee, oak flooring, concrete, softwood plywood, and

gasoline) to total variation as the between-plant price

differences.  For these products there is a potentially larger

role for time-varying demand or cost conditions at the plant

level, as well as noise, to play a role in generating price

dispersion.

  Table 2 indicates that the cross-sectional dispersion

observed in table 1 and figure 1 arises from a different

combination of permanent between-plant differences and

idiosyncratic factors for each product.  These two sources have

different implications for the persistence of the plant-level

patterns over time.  If price heterogeneity arises from

structural factors that are slow to change over time, such as the

quality of a plant's output or efficiency advantages that the

plant may have, then a plant's location in the price distribution

should tend to persist over time.  In contrast, if the price

variability arises solely from plant-level shocks that are not
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serially correlated over time, such as idiosyncratic cost or

demand shocks or pure measurement errors, then there should be no

persistence in the rankings of plants over time.  In the next

subsection we summarize the time-series persistence as one way of

categorizing the importance of structural and random factors in

generating price dispersion.



     15  A plant must be in operation in two adjacent census years to be
included in these calculations.  
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B.  Persistence in Pricing Patterns

 We explore the persistence in the output price

distributions by constructing transition matrices that summarize

the movement of plants among different quartiles of the price

distribution over time.  These transition rates are less likely

to be affected by small measurement or reporting errors than the

variances reported in Table 2.  Table 3 disaggregates plants by

the quartile of the price distribution in which they were located

in one census year and then reports the proportion that move to

each of the other quartiles in the following census year.15  To

simplify the table we have aggregated the second and third

quartiles of the price distribution into a single category.  The

first row of the table indicates that, of all hardwood plywood

producers in the highest price quartile in census year t, 83.5

percent remained in the highest price quartile 5 years later,

14.1 percent had dropped to the middle two quartiles of the price

distribution and only 2.4 percent had fallen to the lowest

quartile.  Of plants in the middle two quartiles in year t, 71.9

percent remained there in year t+1.  Also, 63.2 percent of the

low-price plants in year t remained there in t+1. 
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As a basis for comparison, if all price variation within a

year is due to idiosyncratic shocks, so that (i=0, then the

probability of being in any quartile in year t+1 is independent

of the location in year t and the first column of table 3 should

be .25, the second column .5, and the final column .25.  The same

pattern should be observed in columns 4-6 and columns 7-9.  We

test that each sample proportion is significantly different than

.25 or .5, as relevant, and denote cases where the hypothesis is

not rejected.

Focusing first on the transition rates of  high-price

producers in columns 1-3,  two patterns are evident.  First, the

probability of remaining a high-price producer is greater than

would be indicated by the random movement of prices.  The

probability varies from a low of .398 for gasoline to a high of

.835 for hardwood plywood.  For all of the products the

transition rate is significantly different than .25.  Second, for

many of the thirteen products,  the probability of moving into

the middle two quartiles does not differ significantly from .5,

while the probability of moving into the low price category is

substantially less than .25.  This implies that the producers

that move out of the high-price category predominantly move into

the middle of the price distribution but that too few move into

the low price quartile for the transitions to be driven solely by



     16  Due to a small number of observations, the probabilities for wool
apparel fabrics are not precisely estimated.
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random factors.16  While plants clearly move through the price

distribution over time, the persistence of plants in the high-

price part of the distribution suggests that structural, rather

than purely idiosyncratic, forces are at work in determining

pricing patterns.

The transition rates for plants with prices in the middle

two quartiles of the price distribution tell a similar story. 

The probability of remaining in the middle-price category exceeds

.5 for all products, and the difference is significant for eleven

of the products, indicating more persistence than would be

generated by random price movements.  For plants that move out of

the middle-price category, the probability of moving to lower

prices is greater than the probability of moving to higher prices

for 8 of the 13 products.  Five of the products have a higher

probability of plants moving up in the price distribution and for

one product the probabilities are equal.  Among the plants in the

lowest quartile of the price distribution in year t, between 38.8

percent (gasoline) and 73.3 percent (newsprint) remain in the

lowest price quartile 5 years later.  All of these transition

rates are significantly different than .25.  Transitions out of

the low-price category are also heavily weighted toward the

middle, rather than the upper tail, of the price distribution.  



     17  The one prominent exception to this conclusion is newsprint.  This
product has the lowest overall price dispersion but the highest level of price
persistence at the plant level.  It suggests that price dispersion arises from
small persistent cost, demand, or product quality differences at the plant
level and there are very few or very small idiosyncratic shocks.   
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Overall, the transition rates indicate more persistence in

the ranking of plant prices than is consistent with purely

idiosyncratic shocks generating price dispersion and suggest that

structural factors that change slowly over time are responsible

for some of the price heterogeneity that is observed.  In

particular, the probability of remaining in the highest or lowest

quartile of the price distribution is too large, relative to

random chance, and the probability of moving to the other tail of

the distribution is too small. 

When comparing the probabilities of remaining in the same

quartile of the price distribution (cols. 2, 5, and 8) across

products, one additional pattern is evident.  The degree of

persistence is highest for the products with the largest overall

levels of price dispersion such as hardwood plywood, the three

fabric products, and tin cans.  In general, the lower dispersion

products such as coffee, oak flooring, concrete, softwood

plywood, and gasoline have less persistence and transition rates

that more closely approach random noise.17  This suggests that

products with larger price dispersion are not ones with larger

idiosyncratic shocks but rather ones where serially-correlated

structural factors are more important.  The reduction in total
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dispersion as we move down the rows in tables 1 and 2 results

from a reduction in the relative importance of permanent to

idiosyncratic variation in the price data.

C. Output Prices and Producer Size

Theoretical models of industry evolution often generate

differences in producer size with a combination of permanent

differences in cost or productivity between producers and

idiosyncratic demand or cost shocks over time.  The importance of

permanent between-plant size differences versus within-plant

idiosyncratic variation in size for the products in this study is

summarized in the last two columns of Table 2.  For every product

the between-plant size variation is larger than the total within-

plant variation, in some cases by a factor of ten, indicating an

important role for permanent, or at least slowly evolving, size

differences.  If output prices are correlated with plant size or

productivity, then the heterogeneity and persistence in output prices

documented in the two sections may be another manifestation of the

underlying process that generates persistent differences in size.

There are several reasons to suspect that plant size will be

systematically related to output price.  If larger plants serve

larger, more competitive markets then their prices may be lower as a

result of the increased competition.  If larger plants have lower

production costs, either because they are more efficient or can

exploit scale economies, these may be passed on to purchasers

(Demsetz (1973) and Peltzman (1977)).  If larger plants produce very



     18  The quartiles are constructed from the distribution of real output
levels observed across all years.  The size distributions are very stable
across census years.  The regressions are estimated with weighted least
squares.  The observations within each quartile are used to estimate the
standard deviation within the quartile and these are used as quartile-specific
weights in the regressions.

     19 The use of quartile regressions is robust to measurement errors in
output.  Simple regressions of plant price on output are subject to two
sources of bias.  The first is the standard error-in-variables bias that
results from mismeasurement of an explanatory variable and will bias the
coefficient on output toward zero.  The second bias arises from the fact that
price is constructed as the ratio of value of shipments to output so that
measurement errors in output are transmitted to price and introduce a spurious
negative correlation between price and output.  If the true output coefficient
is negative then the two biases work in the opposite direction.  The magnitude
of the biases will decrease as the ratio of the variance of the true output
level to the measured output level increases.  Because the true cross-
sectional size variation is so large in the manufacturing data, and the size
differences are so persistent over time, it is unlikely that output
measurement errors play a large role in generating the cross-sectional size-
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homogeneous, standardized products while smaller plants manufacture

specialty products and serve niche markets then costs and prices may

vary with size (Caves and Porter (1977), Porter (1980)).    

To summarize the output price-size relationship we regress the

log of the plant's normalized output price ln P*
it on dummy variables

for the size quartile in which the plant is located in year t and

conduct simple parametric tests of the equality of mean prices across

quartiles of the plant size distribution.18  The regression results

and tests for equality of means are reported in table 4.  In these

regressions $1 is the intercept and represents the mean price in the

smallest size quartile.  The other coefficients represent deviations

from this for the three larger quartiles.  The estimates of $1 show

that, with the exception of gasoline, the smallest producers have

prices above the mean. The significant negative estimates for the

other coefficients indicate a statistically significant decline in

the mean price across the size distribution.19   



price relationship which is summarized in table 4.   Roberts and Supina (1996)
provide pictures of the nonparametric regressions of price on output, which
clearly illustrate the negative cross-sectional correlation, for six of the
products studied here.

     20  Tin cans is unusual because, while there are a large number of
plants, they are virtually all owned by a small number of firms.  Can plants
tend to be constructed near the location of the food processing or beverage
plant that will purchase their output.  If all cost and price heterogeneity
arises at the firm, rather than plant, level and if the size of can plants
largely reflects the demand of the near-by users, then there may be persistent
price heterogeneity yet no correlation between a plant's size and price.
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The hypothesis that the mean price is constant across the four

quartiles ($2=$3=$4=0)  is tested and the F-statistic is reported in

column 5 of the table.  The hypothesis is rejected for all products

except tin cans, gasoline, and newsprint.  The latter two are the

products with the lowest overall price dispersion.20  The remaining 10

products all show significant price declines with increases in plant

size.  We next test the hypothesis that the price differences arise

only for the smallest plants in the industry by testing that plants

in the three largest quartiles have average prices that are equal

($2=$3=$4).  This hypothesis is rejected for 8 of the 10 products. 

Finally, the hypothesis that plants in the largest two quartiles have

equal prices ($3=$4), is rejected for four of the products, hardwood

plywood, cotton sheeting, corrugated boxes, and concrete.  The

results indicate that these four products have systematic price

declines that continue across the whole size distribution.  Overall

in the cross-section, output prices decline with plant size for ten

of the thirteen products.  Two of the products with no significant

size-price correlation, gasoline and newsprint, are the two for which

there is very little overall dispersion.  These findings further

reinforce the conclusion of the previous section that the observed



     21   This finding also has implications for the measurement of productivity
and scale economies with micro data (see Abbott (1992) and Klette and
Griliches (1996)).  In most applications real output is constructed by
deflating the value of firm or plant shipments by a common industry-level
price index.  Our finding that output prices are lower for large plants
implies that the use of a common price deflator will underestimate the output
and productivity of large producers relative to small.  This problem may be
mitigated somewhat in industry-level studies if the output deflator accurately
reflects the prices of the  large producers since they will account for the
bulk of industry output and input use.

     22  The complete details of the cost function models are described in Supina
(1994) and here we will simply summarize some important aspects of the model
and estimation methods. 
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cross-sectional price variation is not simply random noise. 

Differences in output prices across plants persist over time and the

level of a plant's output price is negatively correlated with the

plant's size in the cross-section.21  In the next section we examine

whether production costs vary systematically across plants as one

possible explanation for the cross-sectional pattern of output prices

and its persistence over time. 

IV. Plant-Level Marginal Cost 

An important component of any explanation of price heterogeneity

must be heterogeneity in cost, yet cost data is absent from most

empirical studies of price dispersion.  As part of this research

project we have estimated cost function models using the plant-level

panel data and constructed estimates of marginal cost that vary by

plant and year reflecting differences in factor prices and the level

and mix of plant output.22  Several unique characteristics of the

census establishment data are important for modeling production

costs.  First, virtually all plants produce more than one output. 

Simply ignoring the output of the plant that is not in the product



     23 In general the omitted and included output will be positively correlated
because large plants tend to have higher levels of both outputs.  These will
lead to an upward bias in the coefficient on output in cost function
regressions and thus upward biased estimates of marginal cost. 

     24 Given the large sample sizes and number of products we examine in this
project, it would be an enormous task to construct plant-level service prices
for capital that adequately reflected plant-level variation in the opportunity
cost of funds, tax variables, and other components of the service price.  We
will include an ownership-type variable in the cost function model to control
for possible differences in capital costs between single and multi-plant
producers.  Also, because investment flow data is generally only collected for
large plants on an annual basis (as part of the Annual Survey of Manufactures)
it is not possible to construct perpetual-inventory capital stocks for most of
the plants in the samples.  We do utilize the available information on the
book value of the plant's capital in several ways.  In the cost model it is
used as an instrumental variable for the plant's output and, in the next
section, as an additional variable to explain markup differences across
plants. 

25

category we study would lead us to systematically underestimate total

plant output and, depending on whether the omitted output was

positively or negatively correlated with the output we are interested

in, will lead to upward or downward bias in scale parameters.23  To

account for this we aggregate the shipments of all other products

manufactured in the plant into a single secondary output, deflate

this with an industry-level price index, and include it as an

additional control in our multi product cost models.  Second, we are

able to construct plant-specific prices for materials, labor, and

energy and utilize flexible functional forms that allow estimated

marginal cost to vary with these factor prices.  Third, we have

relatively poor information on the plant's capital use.  Data for the

book value of capital stocks is available by plant in most years but

no information on plant service prices or expenditures on capital

input is collected.  Because of this, cost is defined as the plant's

expenditure on materials, labor, and energy inputs.24  Because of the

missing capital data we will systematically underestimate the level



     25  If  larger plants have more capital intensive technologies, then our
inability to measure capital expenditures means that  our underestimate of
long-run marginal will increase with plant size.  This is true assuming
capital prices are identical for small and large plants.  In practice the
price of capital is likely to decline with  plant size because large plants
are often owned by corporations or large firms who can borrow at lower
interest rates.  If this is true then the measurement bias could increase or
decrease with plant size.

     26 We also estimate "short-run" cost models that include the book value of
the plant's capital stock as an additional argument, C(pl, pm, pe, Q, R, Dt, U,
K).  This approach is justified if plants choose labor, materials, and energy
inputs to minimize expenditure on these three variable inputs subject to a
fixed capital stock.  In this case the total cost we measure in the data is
the theoretically correct one.  Estimates of the short-run model were
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of a plant’s marginal cost because the expansion in capital costs

with increases in output will not be captured.  Perhaps more

importantly, since large plants are generally more capital intensive

the bias in our estimate of marginal cost will increase with plant

size, leading us to potentially underestimate marginal cost and

overestimate markups more for large plants.

The basic "long-run" cost model is C(pl, pm, pe, Q, R, Dt, U)

where the first three arguments are the prices of labor, material,

and energy, Q is the output level of the product we are studying, and

R is the output of all other products manufactured in the plant. 

Cost is defined as the expenditure on labor, materials, and energy.25 

Year effects are controlled for with a set of time dummies Dt that

distinguish census years.  These are interacted with the factor

prices to recognize that the factor demand equations may also shift

over time.  A single-unit/multi-unit ownership dummy U is also

included to control for possible differences in capital prices, or

differences in the way that central office expenditures are

allocated. 26 



unsatisfactory because in micro data sets that are dominated by cross-
sectional variation among producers, such as the Census of Manufactures data,
capital acts as a scale parameter like output and reflects long-run
differences in plant size, rather than the short-run substitution between
fixed and variable inputs.  As a result estimates of the cost elasticity with
respect to capital were generally positive, reflecting the fact that plants
with more capital are larger and have higher variable costs, rather than
negative as it would be if it reflected substitution effects.  
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The empirical model uses the translog functional form and

estimates the cost function together with cost share equations for

materials and energy.  Estimates of a plant's marginal cost for

output Q are constructed as:

where the Greek letters are the cost function parameters that are

estimated.  Estimated marginal cost will vary across plants with

differences in factor prices, output levels, and output mix.

Two problems that can arise in production models estimated with

micro data are unobserved heterogeneity and measurement error in

output.  Both can lead to bias in output-related parameters in the

cost function and thus bias in estimates of returns to scale or

marginal cost (see Griliches (1986), Griliches and Hausman (1986),

and Mairesse (1990) for discussion).  In general, measurement error

in output, which can arise from improper deflation (which is not a

problem in our data set) or from deviations between observed and

planned output caused by random demand or input supply shocks, will

result in a downward bias in output coefficients and an upward bias

in estimates of scale economies.  Similarly, unobserved efficiency
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differences, which will tend to dominate in cross-section data, will

generally lead to upward biased estimates of returns to scale,

because more efficient producers will be larger and have lower

average cost.  If we overestimate the degree of scale economies we

are likely to underestimate the marginal cost of large producers and

thus overestimate their markups.

We estimate the cost model using the seemingly unrelated

regression (SUR) estimator. In an attempt to control for measurement

error arising from deviations between planned and actual output we

use the plant's beginning-of-year capital stock as an instrumental

variable for output.  Like the SUR estimator, this IV estimator

relies primarily on cross-sectional variation in the data.  Second,

to eliminate plant-specific, time-invariant heterogeneity in the cost

function we estimate the cost function in first-differences. 

Griliches (1986) and Griliches and Hausman (1986) show that, while

removing one problem, difference estimators can exaggerate the bias

from measurement error.  The use of longer time differences, in our

case five-year differences, will reduce but not eliminate this

problem.  To attempt to correct for both sources of bias we also

apply the instrumental variable estimator to the time-differenced

data using the plant's capital stock as an instrument for the growth

in output.

 Among the different estimators the SUR and IV estimators that

exploit the cross-section variation in the data provide the most



     27   The returns to scale estimates from the time-differenced data are
implausibly high, which is consistent with differencing exaggerating the
measurement error problem in output, and attempts to instrument the growth in
plant output are  of little value, probably because the instruments are fairly
poor.  In addition to capital we used lagged values of output, as suggested by
Griliches and Hausman (1986), as additional instruments but the results were
very similar.  As expected, the use of instrumental variables also led to
substantial increases in standard errors of the coefficients.
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plausible estimates.27  In general the SUR estimates show slight

increasing returns to scale across most of the plant size

distribution, while the IV estimates indicate constant returns to

scale for plants in the largest one or two quartiles of the size

distribution.  This is consistent with slight measurement error

problems in the cross-sectional output data.  In the remainder of

this paper we will rely on the SUR estimates of the cost

function.  The main way this will affect our results is to load

unobserved heterogeneity effects into the scale-related cost

parameters.  Given that our interest is in constructing point

estimates of marginal cost for each plant that recognize the

plants’ scale of operation and factor prices, and not separating

heterogeneity and scale parameters, this should not be a serious

problem.  

Table 5 provides summary measures of the variation in

estimated marginal cost across the plant size distribution.  The

format of the table is identical to Table 4.  The dependent

variable is ln MC*
it = ln(MCit) - n-1ln( Ji (MCit))  which is the log

of plant-level marginal cost normalized by the log of the

geometric mean of marginal cost in the same year.  This is



     28 Wool apparel fabric is not included because the data was too incomplete to
estimate the cost model.  
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regressed on a set of dummy variables for the quartiles of the

size distribution as a way of summarizing the cross-sectional

marginal cost variation with plant size.

The marginal cost variation observed in Table 5 is

straightforward to summarize for most of the products because it

parallels the patterns observed for output price.28  For most of

the products, particularly the ones with high price dispersion,

marginal cost falls with increases in plant size.  Of the first

ten products listed in the table, there is a significant decline

in marginal cost for eight of them.  The same products also had

significant declines in output price.  Tin cans does not have a

significant pattern in marginal cost across the size

distribution, but this also parallels the finding of a weak

correlation between output price and size in Table 4.  Concrete

has a slight decline in marginal cost for plants in the middle of

the size distribution, but a much more systematic decline in

output price.  The final two products, gasoline and newsprint,

have no systematic output price pattern but both have systematic

variation in marginal cost.  Overall, for most of  the twelve

products and for all of the products with the largest price

declines, marginal costs are lower for large producers.

This cross-sectional decline in marginal cost reflects a

number of factors.  Scale effects are important for three of the



     29 The scale elasticity is defined as SE = ( M lnC/M lnQ  +  M lnC/M lnR )-1. 
Both of the cost elasticities vary with the plant’s output mix and factor
prices.
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products with large cost declines, hardwood plywood, polyester

fabric, and cotton sheeting.  The scale elasticity, evaluated at

the means of the data, equals 1.78, 1.46, and 1.52 for the three

products, respectively.29   For a second group of products,

bread, oak flooring, concrete, softwood plywood, and newsprint, 

the scale elasticity at the means of the data varies from 1.13 to

1.20, thus contributing to a decline in marginal cost with plant

size.  For the final group of products, cans, corrugated boxes,

coffee, and gasoline, the scale elasticity lies between 1.02 and

1.04, indicating that increases in plant size have little effect

on marginal cost.   As discussed above, the scale elasticity will

capture both true scale economies as well as the effect of

unobserved heterogeneity that results in shifts of the intercept

of the cost function across plants.  For our purpose, which is to

account for across-plant differences in marginal cost due to all

sources, this is fine.  A second way that scale differences

affect our marginal cost estimates is through economies of scope. 

For virtually all of the products we find significant economies

of scope which implies that increases in the plants' other

outputs will lower the marginal cost of the product we are

focusing on.  Since larger plants generally produce more of both

outputs Q and R  this will contribute to a decline in the
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marginal cost of output Q as plant size increases.  Factor price

differences also contribute to heterogeneity in plant marginal

costs.  Material prices decline with plant size for many of the

products, particularly corrugated boxes, coffee, concrete, oak

flooring, and softwood plywood, which will lower the marginal

cost of larger producers.  Countering this is the fact that

larger plants almost always pay higher wages.  Taken together,

these factors contribute to substantial cross-sectional variation

in marginal cost, as evidenced by the coefficients in table 5,

with the net effect being lower marginal costs for large plants

in all but three of the products.  This suggests that the lower

output prices charged by large plants may reflect underlying cost

advantages and this issue is explored in the next section.

V. Plant-Level Markups 

In this section we combine the measured output prices and

estimated marginal costs into a plant markup and summarize its

cross-sectional and time-series patterns.  The plant’s markup is

defined as ln( Pit / MCit ), which  can be interpreted as   - ln

(1 - 1/0it ) where 0it is plant i’s demand elasticity in year t. 

Since both the output price and marginal cost decline with plant

size for most products, the cross-sectional variation in the

markup will reflect which variable declines more rapidly.  Table

6 summarizes the difference in average markups across the



     30  If all plants are selling an identical product at the same market price,
as assumed in the Cournot model, then all the observed cross-sectional
variation in output price would have to arise from random measurement errors. 
This is inconsistent with the persistence patterns documented in table 2 and 3
for most of the products.

     31   To control for variation in capital use, we also estimate the markup
regression including the log or the plant’s capital stock and its square as
explanatory variables.  This controls for the fact that the marginal cost
estimates do not capture difference in the capital intensity of the plants and
the markup we estimate must, in the long run, cover the plant’s capital costs. 
The capital stock data is not available for 1963 and 1967 and this results in
reductions is the sample sizes available for the markup regressions.  The
effect of including capital in the regressions is discussed below.
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quartiles of the plant size distribution.  The format of the

table is identical to tables 4 and 5 and the markup is expressed

as a deviation from the geometric mean in the relevant year.

There are three reasons we might expect markups to rise with

plant size.  If larger plants have lower demand elasticities

because, for example, there are fewer alternative products

available to purchasers, then markups should rise with plant

size.  If plants have different marginal costs and act as Cournot

competitors in a homogeneous-good output market then markups will

increase with market share.30   Finally, bias in marginal cost

estimates resulting from our inability to measure capital

expenditures will generate an increase in the markup with plant

size if large plants are more capital intensive.31  There is at

least one reason to expect markups to decline with plant size. 

If larger plants operate in more populated geographic markets

they are likely to face more competitors than small
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geographically-isolated producers and should thus face higher

demand elasticities for their product and have lower markups.

The markup-size relationship varies substantially across the

12 products.  For six of the products, polyester blend fabrics,

bread, coffee, oak flooring, softwood plywood, and newsprint,

there is a significant increase in the markup with plant size and

the increase is often monotonic across the size class dummies.  

Two of the 12 products, cotton sheeting and gasoline, have no

significant change in markups with plant size.  The final four

products, hardwood plywood, cans, corrugated boxes and concrete,

have markups that decline significantly as plant size increases.

Hardwood plywood is the most unusual case, with a markup

that declines by 70 percent as we move from the smallest to

largest quartile of plants.  This is also the product with the

most price dispersion (table 1) and the highest ratio of between-

plant to within-plant price variation (table 2).  It is likely

that, among our set of products, this has the most substantial

variation in the quality of output across plants and the price

and markup decline is consistent with the large plants

specializing in standardized commodity products, which are close

substitutes, while smaller plants serve specialized niche

markets.  The other three products with declining margins, cans,

boxes, and concrete, share the common feature that they are sold

in relatively small geographic markets.  Thus the cross-sectional
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markup variation in Table 6 can reflect differences in local

markup competition.  The decline in both price and markup across

the size distribution is consistent with larger plants serving

more densely populated, and more competitive geographic markets. 

We note, however, that the other product sold in small markets,

bread, does not show evidence of this competitive effect possibly

because there is more product differentiation among bread

producers.

The two products with no size related variation in markups,

cotton sheeting and gasoline, have the lowest level of markups

but very different underlying price and cost patterns.  Like

hardwood plywood, cotton fabric has a high degree of price

dispersion and a high ratio of between-plant to within-plant

price variation, suggesting that unobserved quality variation

among producers is playing a significant role. The average price

of cotton fabric falls by 38 percent from the smallest to largest

quartile of plants, but this is closely matched by a decline in

marginal cost, again consistent with quality variation, resulting

in markups that are small and fairly constant across the range of

plant sizes.  In the other case, gasoline, there is no systematic

price variation and a slight increase in marginal cost, resulting

from higher crude oil prices, for larger plants.  Markup

differences among different size plants appear random.  



     32  When we also include the plant’s capital stock as an additional control
variable that may account for rising margins, the markups for these six
products rise more substantially than those reported in Table 6.  The
increased markup for large plants that we observe does not appear to be due to
more capital inputs in larger plants. 
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For the six products with increasing markups, the common

thread is that all of them have substantial declines in marginal

cost.  The coefficient $4 in Table 5 indicates that, on average,

the marginal cost for the largest quartile of producers is

between 20 and 66 percent lower than the cost for the smallest

quartile of producers.  With the exception of newsprint, for

which there is little output price variation, these lower costs

are partially passed through to the output market in the form of

lower prices.32  This pattern is consistent with large producers

that face more inelastic demand than their smaller rivals.  Their

lower costs are reflected partially in lower output prices and

partially in higher markups.  Two of the products, bread and

coffee, are ones where advertising and product differentiation

play a role in consumer markets and could lead to more inelastic

demand for the output of the large, national producers.  The four

remaining products are generally sold as intermediate materials

to other manufacturing firms and it is not clear without more

detailed study of the using industries what to expect about the

pattern of demand elasticities faced by large versus small

producers.



     33  Newsprint is dropped from this table because there were insufficient
observations to precisely estimate the transition rates.

37

Differences in demand elasticities and markups across plants

can result from idiosyncratic shocks or from more permanent

across-plant differences in product quality or other structural

factors. We quantify the relative importance of permanent plant-

specific factors versus transitory fluctuations in the markup by

examining transition rates through the separate markup

distributions over time.  These are summarized in Table 7, which

has the same format as table 3.33  The first row of the table

shows that, of the 25 percent of the plants with the highest

markups in year t, .484 of them remained in the highest markup

quartile five years later, .387 had moved to the middle two

quartiles of the markup distribution, and .129 had moved to the

lowest quartile.  The table also reports test results for the

hypothesis that the transition rates are equal to those that

would be generated by purely random movements in markups. 

Two patterns are evident.  First, as we observed with the

price distribution, there is too much persistence in the tails of

the markup distribution for the variation to be driven purely by

idiosyncratic shocks.  For all but one product, softwood plywood,

the probability of remaining in the highest markup quartile or

remaining in the lowest markup quartile is significantly

different than the .25 that would be observed with random

movements, and frequently exceeds .50.  There is also no obvious
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difference in the persistence patterns for the products that have

lower markups for the large plants (hardwood plywood, cans,

corrugated boxes, and concrete).  Second, when compared with the

transition rates for output prices in table 3, the transitions

for plants in the middle of the markup distribution are much more

frequently consistent with random movements in markups.  That is,

we reject the hypothesis of random movements less often with the

markups than with the output prices.  For five products,

polyester blends, cotton sheeting, coffee, oak flooring, and

softwood plywood, we cannot reject the null hypothesis of  random

movements for plants that begin in the middle two quartiles of

the markup distribution.

The implication of these patterns is that random shocks or

noise in the data are a more important source of markup variation

than they are of output price variation but that persistent

structural factors are still important in accounting for

differences among plants in the high and low markup tails of the

distribution.  Given our earlier findings on the decline in

prices and marginal costs across the size distribution and the

importance of permanent between-plant differences in size, the

markup transitions are not surprising.  If the between-firm

variation in prices arises largely from between-firm differences

in costs then the markup effectively nets out much of the

between-firm variation in these two components and leaves a
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larger role for idiosyncratic shocks as the source of markup

variation. While the larger idiosyncratic variation makes

movements among quartiles of the markup distribution more likely,

there is still a permanent component that is identifiable for the

highest and lowest markup plants.

 VI. Summary and Conclusions

In this paper we exploit data on output prices at the plant-

level to study the dispersion of prices, their persistence over

time, correlation with producer size, and correlation with

production costs for thirteen homogeneous manufactured products. 

The data reveal that the amount of micro-level price dispersion

varies substantially across products but is relatively constant

over time for any specific product.  Patterns of movement through

the price distribution over time reveal that there is more

persistence in the pricing of individual plants than would be

generated by purely random movements.  In particular, high-price

plants tend to remain high price and low-price plants remain low

price with high frequency, suggesting that underlying time-

invariant structural factors contribute to the output price

dispersion.  For all products except gasoline and newsprint, the

two products with the least overall price dispersion in our

group, large producers have lower output prices.
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To explore if price differentials are cost based we estimate

cost function models, construct plant-specific estimates of

marginal cost, and examine time-series and cross-sectional

patterns of plant-level price-cost markups.  The markup remains

unchanged or increases with plant size for all but four of the

products and declining marginal costs play an important role in

generating the markup patterns.  The plants with the highest and

lowest markups for each product tend to remain in the same

location in the cross-sectional distributions in different years,

although the degree of persistence for plants in the middle of

the distribution is not as strong as it is with the output price,

suggesting that idiosyncratic factors are more important in

generating markup variation than they are in generating output

price variation. 

The evidence we offer highlights the heterogeneity in output

market performance across different producers.  While no

manufactured product is perfectly homogeneous across sellers, we

have chosen products to come as close as possible to that norm.

Even in these cases, there exists substantial and persistent

variation in output prices and markups across plants for most of

the products we study. This emphasizes that underlying producer

heterogeneity in demand elasticities and production costs are



     34  Beginning with Stigler (1961), models with buyer search costs have been
used to generate price dispersion for identical products.  Reinganum (1979)
and Carlson and McAfee (1983) develop models in which marginal cost
differerences among sellers are reflected in the price distribution.  Fishman
and Robb (1995) use a combination of search costs, serially-correlated firm
cost shocks, and repeat purchases by consumers to generate persistent price
and profit differences among producers.  At present we do not have any
evidence on whether search costs are important or likely to differ across our
products and so are not able to draw any conclusions about how relevant these
models are for the patterns we observe. 
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likely to be important determinants of micro level price and

markup patterns even in relatively homogeneous goods markets.34

There are, however, differences in the price, cost, and

markup relationships across products and we cannot point to a

single structural explanation that is consistent with the

observations for all.  Rather, this diversity suggests that the

underlying structural features of the industry differ

substantially across products.  For example, in corrugated boxes

differences in the competitiveness of large and small geographic

markets combined with small differences in production costs are

consistent with the lower prices and margins for large plants. 

In contrast, the substantially lower marginal costs of large

coffee producers, combined with brand name effects supported

through advertising, may be responsible for the slightly lower

prices, but significantly higher markups of the large producers. 

Finally, the small price dispersion, high transition rates, and

low correlation of prices, costs, and markups with plant size for

the gasoline refiners suggest a process in which random shocks
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and other sources of  noise are the dominant source of output

market heterogeneity.

Overall, our empirical findings support the view articulated

by  Demsetz (1973) that producers differ in their efficiency and

that this has implications for how we view the competitiveness of

market outcomes.  In addition, we provide evidence that these

efficiency differences are at least partially reflected in output

prices.  Large producers not only have lower costs in many

product markets, they also have lower output prices.  The results

suggest the value of further theoretical and empirical work that

recognizes the existence of within-industry producer

heterogeneity and can link the production and demand sides of the

firm’s decisions.
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Table 1 
 

Summary Measures of Output Price Distribution by Year

Trimmed Mean
(Coefficient of Variation)

[Robust Dispersion Measure]

Product 1963 1967 1972 1977 1982 1987 Mean

Hardwood Plywood
($/sq. ft. (surface measure))

  .255
(80.84)
 [2.213]

.292
(79.97)
[2.270]

.347
(78.89)
[2.242]

.548
(90.19)
[2.427]

.757
(70.70)
[2.479]

.893
(65.60)
[2.434]

(77.70)
[2.344]

100% Spun Polyester Blend
with Cotton ($/lin. yd.) --

.555
(58.06)
[1.414]

.501
(53.51)
[1.041]

.846
(44.01)
[1.108]

.779
(59.89)
[1.868]

-- (53.87)
[1.358]

Cotton Sheeting & Allied
Fabrics ($/lin. yd.)

  .300
(52.33) 
 [1.052]

.328
(42.50)
[1.091]

.453
(52.50)
[1.156]

.804
(78.11)
[1.721]

.867
(54.59)
[1.728]

-- (56.01)
[1.350]

Finished Wool 
Apparel Fabrics ($/lin. yd.)

 2.249
(34.09) 
  [.931]

2.293
(36.02)
[1.017]

2.507
(37.63)
[.909]

4.910
(34.03)
[.986]

6.721
(18.80)
[.671]

7.525
(33.83)
[1.191]

(32.40)
[.951]

Tinplate Steel Cans
($1000/base box of steel)

  .017
(26.20)
  [.663]

.019
(30.99)
[.667]

.024
(24.96)
[.629]

-- -- -- (27.38)
[.653]

White Pan Bread
($/lb.)

  .164
(27.36) 
  [.475]

   .178
(26.44)
  [.571]

.198
(25.99)
[.493]

.297
(28.02)
[.656]

.408
(49.63)
[.790]

.475
(33.79)
[.850]

(31.87)
[.639]

Corrugated Shipping
Containers ($1000/short ton)

  .227
(21.79) 
  [.517]

.238
(23.87)
[.563]

.256
(36.94)
[.613]

.391
(27.73)
[.579]

.538
(39.61)
[.458]

.621
(37.19)
[.505]

(31.19)
[.539]

Roasted Coffee
($/lb.)

  .622
(16.41)
  [.409]

.702
(15.01)
[.392]

.846
(14.35)
[.365]

2.955
(16.08)
[.418]

2.290
(17.49)
[.394]

2.601
(25.121)

[.539]
(17.41)
[.420]

Hardwood Oak Flooring
($/board ft.)

  .147
(13.84) 
  [.312]

.155
(34.48)
[.394]

.204
(15.86)
[.282]

.419
(85.67)
[.685]

-- -- (34.50)
[.412]

Ready-Mixed Concrete
($/cubic yd.)

  .014
(20.30)
  [.328]

.015
(13.22)
[.318]

.018
(15.25)
[.370]

.028
(13.59)
[.321]

.043
(17.38)
[.355]

.046
(37.20)
[.425]

(19.49)
[.353]

Interior Softwood Plywood
($/sq. ft. 3/8" basis)

  .058
(22.20)
  [.316]

.057
(14.66)
[.371]

.088
(17.11)
[.389]

.152
(75.33)
[.202]

-- -- (32.33)
[.320]

Motor Gasoline
($/barrel)

 4.830
(11.50)
  [.307]

5.108
(11.62)
[.304]

5.337
(11.75)
[.261]

15.606
(6.36)
[.159]

39.591
(6.22)
[.133]

22.873
(8.17)
[.167]

(9.27)
[.222]

Newsprint
($1000/short ton)

  .122
(7.41)
  [.126]

.126
(8.16)
[.157]

.147
(5.34)
[.161]

.280
(4.48)
[.140]

-- -- (6.35)
[.146]
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Table 2

Between and Within-Plant Variation in Price and Output

(Output price expressed as deviation from year mean)

Product Between-
Plant

Variance
ln P*

Within-Plant
Variance

ln P*

Between-
Plant

Variance
ln Q

Within-Plant
Variance

ln Q

Hardwood Plywood .294 .149 1.155 .325

100% Spun Polyester
Blends with Cotton

.141 .125 1.493 1.228

Cotton Sheeting &
Allied Fabrics

.162 .119 1.422 .889

White Pan Bread .044 .045 2.510 .343

Corrugated Shipping
Containers

.031 .032 1.389 .287

Roasted Coffee .017 .026 2.440 .220

Hardwood Oak Flooring .020 .049 .871 .730

Ready-Mixed Concrete .015 .020 .856 .280

Softwood Plywood .012 .021 1.366 .768

Motor Gasoline .004 .006 2.745 .261

Newsprint .002 .002 .887 .344
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Table 3

Transition Rates Across Output Price Quartiles

Plants in the highest
 price quartile in year t

Plants in the middle two
price quartiles in year t

Plants in the lowest
price quartile in year t

Product Highest
quartile
in t+1

Middle
two
quartiles
in t+1

Lowest
quartile in
t+1

Highest
quartile in
t+1

Middle two
quartiles in
t+1

Lowest
quartile in
t+1

Highest
quartile
in t+1

Middle two
quartiles in
t+1

Lowest
quartile in
t+1

Hardwood plywood .835 .141 .024 .110 .719 .171 .039 .329 .632

100% Spun polyester blends
with cotton

.426 .519a .055 .164 .746 .090b .135 .308 .558

Cotton sheeting and allied
fabrics

.538 .404a .058 .173 .655 .173 .063 .266 .672

Finished wool apparel fabrics .529 .352a .118b .206b .647a .147b .052 .368a .579

Tinplate steel cans .610 .293 .098 .176 .631 .193 .046 .402a .552

White pan bread .501 .374 .125 .148 .637 .216 .083 .382 .535

Corrugated shipping
containers

.501 .423 .075 .187 .619 .194 .073 .396 .531

Roasted coffee .429 .438a .133 .174 .601 .225b .138 .459a .404

Hardwood oak flooring .521 .375a .104 .182b .625 .193b .130 .457a .413

Ready-mixed concrete .505 .407 .088 .196 .593 .212 .099 .426 .475

Interior softwood plywood .483 .449a .067 .181 .559a .260b .110 .425a .466

Motor gasoline .398 .393 .209b .220b .573 .207 .146 .466a .388

Newsprint .538 .385a .077 .193b .710 .097 .000 .267 .733
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a - do not reject that the proportion equals .5 at the .05 significance level,   b - do not reject that the proportion equals .25 at the .05 significance level
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Table 4
Output Price Differences by Size Quartile

(standard errors in parentheses)
Dependent Variable: ln P*

it

Product $

1
 $

2

$

3

$

4

$

2= $

3= $

4=0

$

2= $

3= $

4

$

3= $

4

Obs. R2

Hardwood plywood  .522**
(.055)

-.415**
(.078)

-.733**
(.074)

-.936**
(.066)

60.95** 31.49** 10.88** 491 .33

100% Spun polyester blends with
cotton

.200**
(.056)

-.083
(.072)

-.258**
(.067)

-.459**
(.069)

15.43** 19.20** 13.31** 367 .15

Cotton sheeting and allied fabrics .213**
(.056)

-.150**
(.071)

-.324**
(.073)

-.379**
(.076)

8.26** 6.88** .65 337 .09

Finished wool apparel fabrics .281**
(.069)

-.338**
(.090)

-.343**
(.082)

-.436**
(.085)

7.40** 1.26 2.04 94 .25

Tinplate steel cans .037
(.025)

-.037
(.032)

-.061**
(.029)

-.049*
(.030)

1.32 .40 .24 712 .01

White pan bread .091**
(.011)

-.088**
(.014)

-.136**
(.013)

-.139**
(.013)

35.21** 11.90** .06 2807 .05

Corrugated shipping containers .136**
(.009)

-.119**
(.011)

-.185**
(.010)

-.240**
(.010)

242.09** 138.51** 83.28** 4571 .18

Roasted coffee .047**
(.013)

-.021
(.018)

-.079**
(.019)

-.089**
(.019)

8.28** 8.51** .31 762 .04

Hardwood oak flooring .107**
(.040)

-.122**
(.044)

-.131**
(.046)

-.175**
(.048)

3.98** 1.57 1.74 280 .05

Ready-mixed concrete .046**
(.003)

-.028**
(.004)

-.059**
(.004)

-.096**
(.005)

122.05** 119.92** 71.50** 11360 .04

Interior softwood plywood .059**
(.029)

-.032
(.031)

-.091**
(.031)

-.113**
(.030)

15.69** 17.17** 2.59 418 .13

Motor gasoline -.004
(.006)

.003
(.009)

.008
(.009)

.005
(.009)

.23 .21 .16 964 .001

Newsprint .024
(.024)

-.038
(.026)

-.034
(.027)

-.025
(.026)

.81 .39 .26 67 .05

** Significant at the "

 = .05 level,  * Significant at the "

 = .1 level
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Table 5
Marginal Cost  Differences by Size Quartile

(standard errors in parentheses)
Dependent Variable: ln MC*

it

Product $

1
 $

2

$

3

$

4

$

2= $

3= $

4=0

$

2= $

3= $

4

$

3= $

4

Obs. R2

Hardwood plywood  .201**
(.064)

-.326**
(.092)

-.259**
(.106)

-.214**
(.081)

3.51** 0.89 0.21 272 .05

100% Spun polyester blends with
cotton

.387**
(.066)

-.354
(.082)

-.525**
(.075)

-.665**
(.076)

26.54** 13.12** 7.61** 268 .29

Cotton sheeting and allied fabrics .274**
(.065)

-.237**
(.077)

-.413**
(.080)

-.448**
(.086)

9.15** 6.04** 0.23 297 .11

Tinplate steel cans -.034
(.035)

.022
(.044)

.035
(.042)

.081**
(.041)

1.56 1.92 2.19 669 .01

White pan bread .135**
(.011)

-.131**
(.015)

-.182**
(.015)

-.231**
(.016)

61.59** 25.13** 11.85** 2638 .09

Corrugated shipping containers .026**
(.012)

-.028**
(.014)

-.026**
(.013)

-.052**
(.013)

6.33** 6.11** 10.56** 4393 .01

Roasted coffee .113**
(.022)

-.101**
(.028)

-.127**
(.028)

-.222**
(.030)

13.61** 10.68** 12.48** 637 .08

Hardwood oak flooring .231**
(.063)

-.195**
(.078)

-.352**
(.086)

-.374**
(.084)

6.22** 3.73** 0.07 200 .11

Ready-mixed concrete .009
(.010)

-.030**
(.012)

-.022*
(.012)

.015
(.012)

6.45** 12.29** 16.02** 6045 .01

Interior softwood plywood .384**
(.057)

-.357
(.062)

-.511**
(.060)

-.662**
(.063)

48.92** 33.72** 20.33** 167 .55

Motor gasoline -.053**
(.016)

.050**
(.018)

.075**
(.018)

.084**
(.018)

7.74** 3.79** 0.54 918 .03

Newsprint .098**
(.044)

-.041
(.066)

-.158
(.085)

-.201**
(.060)

3.26** 3.09* 0.40 47 .24

**  Significant at the "

 = .05 level,    * Significant at the "
 = .1 level
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Table 6
Markup Differences by Size Quartile

(standard errors in parentheses)
Dependent Variable: ln (Pit / MCit )*

Product $

1
 $

2

$

3

$

4

$

2= $

3= $

4=0

$

2= $

3= $

4

$

3= $

4

Obs. R2

Hardwood plywood  .392**
(.054)

-.306**
(.073)

-.551**
(.088)

-.700**
(.064)

34.07** 20.59** 3.58* 272 .34

100% Spun polyester blends with
cotton

-1.62**
(.070)

.212**
(.078)

.197**
(.076)

.237**
(.076)

3.72** 0.43 0.85 268 .05

Cotton sheeting and allied fabrics .014
(.070)

.029
(.079)

-.027
(.081)

-.056
(.077)

0.82 1.55 0.32 297 .01

Tinplate steel cans .041
(.028)

-.032
(.034)

-.054
(.034)

-.078**
(.032)

2.24* 1.76 1.01 669 .01

White pan bread -.057**
(.012)

.054**
(.016)

.069**
(.016)

.108**
(.018)

10.69** 6.84** 6.42** 2638 .02

Corrugated shipping containers .112**
(.009)

-.096**
(.012)

-.164**
(.010)

-.189**
(.010)

149.85** 66.99** 15.55** 4393 .12

Roasted coffee -.050**
(.023)

.045
(.029)

.041
(.029)

.115**
(.031)

3.73** 4.56* 7.65** 637 .02

Hardwood oak flooring -.150**
(.067)

.102
(.080)

.257**
(.084)

.239**
(.084)

3.37** 3.23* 0.07 200 .06

Ready-mixed concrete .027**
(.010)

.013
(.012)

-.022*
(.011)

-.099**
(.011)

44.66** 78.23** 77.83** 6045 .03

Interior softwood plywood -.303**
(.067)

.289**

(.071)
.397**
(.071)

.522**
(.072)

29.63** 25.93** 14.42** 167 .42

Motor gasoline .019
(.015)

-.023
(.019)

-.029
(.018)

-.022
(.019)

0.72 0.15 0.24 918 .00

Newsprint -.086**
(.042)

.016
(.059)

.140*
(.076)

.187**
(.058)

3.53** 4.52* .39 46 .25

**  Significant at the "

 = .05 level,    * Significant at the "
 = .1 level
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Table 7

Transition Rates Across Quartiles of the Markup Distribution

Plants in the highest
markup quartile in year t

Plants in the middle two
markup quartiles in year t

Plants in the lowest
markup quartile in year t

Product Highest
quartile
in t+1

Middle
two
quartiles
in t+1

Lowest
quartile in 
t+1

Highest
quartile in 
t+1

Middle two
quartiles in 
t+1

Lowest
quartile in 
t+1

Highest
quartile
in t+1

Middle two
quartiles in 
t+1

Lowest
quartile in 
t+1

Hardwood plywood .484 .387a .129 .111 .778 .111 .071 .214 .714

100% Spun polyester blends with
cotton

.469 .438a .094 .270b .556a .175b .154b .308 .538

Cotton sheeting and allied fabrics .467 .400a .133b .174b .581a .244b .022 .457a .522

Tinplate steel cans .563 .350 .088 .152 .591 .258b .083 .524a .393

White pan bread .541 .363 .096 .164 .631 .204 .098 .376 .526

Corrugated shipping containers .491 .410 .099 .133 .611 .255b .075 .487a .438

Roasted coffee .505 .398 .097 .250b .543a .207b .094 .406a .500

Hardwood oak flooring .476 .429a .095 .213b .596a .191b .037 .333a .630

Ready-mixed concrete .396 .476a .129 .184 .614 .202 .096 .362 .542

Interior softwood plywood .471b .353a .176b .125 .563a .313b .154b .461a .385b

Motor gasoline .456 .443a .101 .205 .573 .223b .110 .433a .457

a - do not reject that the proportion equals .5 at the .05 significance level,   b - do not reject that the proportion equals .25 at the .05 significance level


